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ABSTRACT

The MPP is used to perform Monte Carlo
simulations for the two dimensional XY

model on lattices of sizes up to
128x128. A parallel random number

generator was constructed, finite size

effects were studied, and run times

were compared with those on a CRAY X-MP

su_ter.
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BACKGRDUND

XY model

The XY planar model is a two

dimensional latticework of interacting

spins. Each spin is a vector of unit

magnitude in the XY plane. The

Hamiltonian of the system is

H = -J Z Si'S j = -J Z cos(si-ej) (i)

where J is the spin-spin coupling, Si

is the spin at site i, 8i is the angle
that Si makes with an arbitrary axis,
and the summation is over nearest

neighbor pairs.

Unli_ the Ising model which has a

finite mean magnetization or long range

order for temperatures below a certain

critical temperature, the XY model has

a different type of behavior in that

there is no long range order for low
temperatures. However, it does seem to

have a critical temperature Tc where it
goes through a phase transition.

Kosterlitz and Thouless show (ref.l)

that there exists certain topological

defects in the XY model which govern
its unusual behavior at low

temperatures. These defects are

vortices of spin. Going around any

closed path in the system the change in

spin from site to site will add up to

an integral multiple of 2=. This

number is a constant of the system so
that whenever a vortex is created.

Below the critical temperature, vortex-

antivortex pairs are bound and stay

close together. Above the critical

tenloerature there is enough heat-energy
in the system to break the bond and the

vortices go off independently. This is

the phase transition that the system
goes through. It is under a class of

what are known as defect mediated phase
transitions.

Statistical mechanics

Using a heat bath algorithm, the

probability of any state i of the
system is given by the Boltzman factor

P(i) = exp(-_Hi) = exp(-Hi/k2 ) (2)

where Hi is the Hamiltonian of the

system, k is the Boltzman constant, and
T is the temperature. States of the

system are values of 8 at each of the
sites. It follows then that the

partition function is given by

Z = E exp(-#Hi) (3)

where the summation is over all states

of the system. The expectation value

of any variable x is given by
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<x> = Z-I 7_ (x)exp(-_Hi) (4)

where again, the summation is over all

states of the system.

Monte Carlo

The Monte Carlo method approximates

these expectation values by averaging

the value of x over a randcm sampling

of states near equilibrium, these being

the states of highest probability.
Since the values that the 8 's take on

are continuous, the summation over all

states is an integration from 0 to 2=

over all 8. The random sampling near

equilibrium then represents evaluations

of this integral at a very sharp

exponential peak.

The states near equilibrium are arrived

at through a Markovian process where

the transitional probability of going

from state 1 to state 2, Q(I,2),

follows the detailed balance condition

Q(I,2)P(1) = Q(2,1)P(2) (5)

where P(1) and P(2) are the

probabilities of state 1 and 2

respectively.

The Metropolis method used sets

Q(1,2) = 1 if the energy of state 2 is

lower than the energy of state i, and
sets

Q(I,2) = P(2)/P(1)= exp(-$AE) (6)

otherwise. Here AE is the change in

energy from state 1 to state 2. A

little reflection will show that this

indeed does fulfill the detailed

balance condition. Not only does this

method allow the system to approach the

state of lowest energy (equilibrium)

but it also allows the system to get

out of any local minimum that it might
find itself.
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XY MODEL PROGRAM

System update

A 128x128 parallel array of real

numbers is defined where the elements

take on values from 0 to 2_. This is a

lattice of spins and the numbers

represent the angle 8 of the spin at

that site with respect to scme axis.

When any site is updated it depends

only upon its four nearest neighbors so

that for the purpose of updating there

are actually two separate sub-lattices

in a checkerboard pattern. One sub-

lattice is updated at a time so as not

to affect the updating of other sites.

This conditional update is done, quite

naturally, with a checkerboard mask.

For a site to be updated the 8 values

of its four nearest neighbors are

brought into memory locations at that

site using the IK3TATE function. Along
the sides of the lattice the ROTATE

function brings in the 8 values of the

opposite sides, thus giving the system

periodic boundry conditions. A trial

spin is arrived at by randomly adding a

value AS, where -4 < A8 < _, to the

spin at that site. The value of 4 is

optimized for the fastest convergence.

The difference in energy between the

trial state and the original state is

given by

AE = Ht-H o = -J Z cos (et-ek)

+J Z cos(eo-ek) (7)

where the t and the o subcripts are the

trial spin and the original spin, and

the summation index k is over the four

nearest neighbors.

A random number R is then generated, if

the energy of the new state is lower or

if the random number R < exp(-_AE) then

the trial spin is kept, otherwise it is

away. This whole process is

done for all sites on the sub-lattice

in parallel. Following this, the

ccmplement sub-lattice is updated in
the same manner and we have a new state



of the system near equilibrium.

Expectation values

The system is initially in a given

state usually one of zero temperature

where all of the spins are aligned.

Then it is in effect brought into

contact with a heat bath of temperature

T. A warm-up period follows and the

system is allowed to came to

equilibrium at the temperature T. For

the XY model, this warm-up takes on the

order of i0,000 to 20,000 lattice

updates. Sample values of x are taken

every i00 updates to promote
independence between values. Usually x

will be a scalar property of the system
so that the SUM function is used at

this step.

The total number of samples taken are

broken up into several equal divisions

and x is averaged in each of these
divisions. Frcm these divisional

averages both the total average of x
and its standard deviation can be

calculated.

Random number generator

The basic idea of the algorithm used to

generate a plane of random numbers in

parallel is as follows. Begin with two

pri_e numbers a,p and set up an integer

parallel array with a different power

of a at every site where the pc_ers

range frc_ 1 to 16384 (128,128).

Multiplying every element by the

constant a**16385 will always give a

different power of a.

The next step is to take all numbers

modulo p so that the randomness ccmes
in as a**m mod p where m is some

integer. Since

p =

[(a rood p) (b mod p)]mod p, (8)

If we take modulo p at every step we

will always have a**m rood p no matter
how large m is.

Each time after multiplying by a**16385
mod p we have a new plane of rar_em

integers from 0 to p. To have a plane

of random real numbers from 0 to i, it

is only necessary to divide by p.

This is an example of the parallel

random number generator setup, which is

done only once, and the generator

itself. Here a_EED, p=MAXRND, and

IRND is the parallel array of integers:

SEIRND (VAR SEED, SEEEM: INIgZER

;VAR IRND:IIAT) ;

VAR I,J:INTEGER;
EEGIN

SEEEM: _EED;
FOR I:=0 TO 127 DO

BEGIN

FOR J:=0 TO 127 DO

BEGIN

WHERE (_W__DEX=I)

(_L__DEX=J) DO n_D:_;
SEEEM:_EEEM*SEED MOD MAXRND;

END;
END;

END;

ROW INDEX and OOL INDEX must be

declared as parameters in the
line. S_**16385 mod p

RAND is a parallel array of real
numbers.

GENRND (VAR SEEEM: INTEGER;

VAR IRND:IIAT;VAR RAND:RIAT) ;
_EGIN

IRND: :13 :=ROTATE (IRND: :13,1,0) ;
IRND:=IRND*SEEEM FDD MAXRND;

RAND'--IRND/MAXRND;
END;

The bit plane ROTATE will be explained

shortly.

RESULTS

Fourier components

For the purpose of finding some good
seeds to use in this psuedo-random

number generator, there are a few
constraints to consider. It is
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necessary that p < sqrt(2**31-1) in
order to insure that there is no

erflcw. Also, the fourier ccmi0onents

of any random number generator must

give results that are close to 0.

A program was written to look at the
first i0 sine and cosine fourier

components. From the results of this

program it became clear that the

multiplication by a**16385 rood p was

not enough to insure randomness. But,

the additional operation of rotating

the thirteenth bit of every number in

the random integer array one element

north, did much to improve the
randomness.

Two seeds found to give very good

psuedo-randcm distributions are a=16307

and p=16309. Figure 1 shows the

fourier components of the distribution

generated from these seeds. The dashed

lines on either side of zero represent

one standard deviation assuming perfect
randomness.

Given a perfectly random distribution
and an infinite amount of numbers

generated, the fourier cumponents would
be zero. Since finite amounts are

being dealt with, there will be

fluctuations away from zero even with

perfectly rar_cm distributions. The

points will do a randcm dance around

zero. It is clear that these two seeds

come very close to giving a
distribution.

More to the point is the result of

using this psue_o-random number
generator in simulating the XY model.

XY model simulation

The XY model simulation program was run

at various values of _ near the phase

transition. Figure 2 shows the

relation of the expectation value of

nearest neighbor correlations,

<cos(si-Si+l> , to _. The error bars

are smaller than the points themselves.

The icier curve is the result of a

128x128 lattice of spins and the upper

5O

curve is the result of a 16x16 lattice

of spins.

The 16x16 lattice of spins was run for

the purpose of _ison with some

previous results done on a Cray X-MP.

The results from the Cray are also

shown in figure 2 and are sitting under

the same points as generated by the

MPP. This is exact agreement.

The distance between the curves of

different sized lattices ccme from what

are known as finite size effects.

These are mostly due to the fact that

in addition to direct spin-spin
interaction there is also interaction

coming around periodic boundries. In

an infinite sized lattice, this would

not happen.

The two curves ccme together at

approximately _ = 1.15. This is where

the phase transition is taking place.

Theoretical predictions (ref.2) give

_c = 1.14.

Cray-1 C_J time

From similar runs of an XY model

simulator written for a Cray X-MP, very

rough calculations show that it takes

1.36E-3 secs of CRAY-I C_J time per

lattice update. On the MPP,

calculations show that it takes 1.86E-4

secs per lattice update. This is

approximately seven times faster than
the CRAY-I time.

OONCLUSION

The MPP is a very useful tool in

simulating the two dimensional XY

model. Properties of the XY model can

now be investigated which are

realistically impossible to do anywhere

else.
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